Research Interests

Embedded System *Computer Architecture Robotics* Machine Learning Digital Circuit Design

EDUCATION

	Washington University in St. Louis	St. Louis, MO, U.S.
•	Ph.D. student in Electrical Engineering; GPA: 3.9/4.0; Advisor: Prof. Xuan Zhang M.S. in Electrical Engineering; Advisor: Prof. Xuan Zhang	Aug. 2016 – present Aug. 2016 – May 2019
•	Harbin Institute of Technology M.S. in Automation; GPA: 93/100, Rank: 1/161; Advisor: Prof. Hui Zhao	Harbin, China Aug. 2013 – July 2015
•	Harbin Institute of Technology B.S. in Automation; GPA: 91/100, Rank: 10/123	Harbin, China Aug. 2009 – July 2013
F	Professional Experience	

Washington University in St. Louis St. Louis, MO, U.S. • Research Assistant on Computer Architecture and Embedded System Aug. 2016 - present Assistant Instructor on ESE 5690 Hardware Acceleration for Machine Learning 2020 Harbin Institute of Technology Harbin, China

Research Assistant on Embedded System and Robotics

Research Experience

Research Assistant @ XZ Group Washington University in St. Louis Research Area: computer architecture and embedded system

1. Real-time Scheduling for Intelligence Systems

(Embedded System, Intelligence System, Real-time Scheduling, Machine Learning) - Develop hardware in-loop drone simulation platform based on NVIDIA Jetson TX2 and Microsoft Airsim simulator. - Develop real-time scheduling on Robot Operating System (ROS) within NVIDIA Jetson TX2.

- 2. GPU Real-time Scheduling for Artificial Intelligence Applications [J1, C1] (Aug. 2018 - Present) (CPU/GPU Architecture, Embedded System, Linux Operating System, Real-time Scheduling, CUDA Programming, Machine Learning)
 - Implement and characterize AI and ML applications on both embedded NVIDIA Jetson TX2 and GTX1080TI GPUs.
 - Partition and virtualize GPU resources (streaming multi-processor and memory) for multiple tasks and users.
 - Design real-time scheduling algorithms for parallel GPU accelerated AI and ML tasks with hard deadlines.
 - Optimize GPU energy and power efficiency under performance constraints.

3. Meso Scale Cyber-Physical System Power Management

- (Embedded System, Microcontroller, PCB Circuit Design)
- Design mobile robot platforms PiCar based on a 1/18 scale RC car chassis.
- Apply upper level intelligence algorithms like computer vision and SLAM on Raspberry Pi 3 / NVIDIA Jetson Tx2.
- Implement lower level motion feedback control on Arduino.
- Implement mobile robot sensing with YDLIDAR F4 lidar and Pi camera.
- 4. Voltage Stacked Power Delivery for Manycore (GPU) System [J3, C2, C3] (Mar. 2017 - Aug. 2019) (Digital Circuit Design, CPU/GPU Architecture)
 - Model voltage stacked power delivery for manycore processors like GPUs.
 - Propose hybrid circuit level (SPICE 3) charge recycling to mitigate supply voltage noise with worse case guarantee.
 - Design control theory driven architecture level (GPGPU-Sim 3.0) power managements.
 - Enable high level power managements like DVFS and power gating collaboration with voltage stacking.

(Apr. 2017 - Present)

Aug. 2016 - Present

(Aug. 2019 - Present)

Sep. 2012 - Jul. 2015

5. Integrated Voltage Regulator (IVR) Modeling and Power Management [J2, C4] (May 2016 - Present) (Digital Circuit Design, Processor Power Management, CPU/GPU Architecture)

- Model integrated voltage regulators (IVRs) such as buck, switched capacitor and LDO.
- Develop open source IVR-enabled power delivery system modeling and simulation platform Ivory.
- Design static and run-time managements for efficient and secure IVR-enabled power delivery.
- Machine learning based IVR-enabled fast power management (DVFS) on CPU/GPU heterogeneous systems.

Research Assistant @ Control and Simulation Center Harbin Institute of Technology

- Research Area: high precision servo robot system
- High Precision Angle Measurement System for Servo Robot [C6] (Sep. 2012 July 2015) (PCB Circuit Design, Embedded System Programming, FPGA/DSP, Microcontroller, Robotics Control)

 Design robot angle measuring systems on inductosyns and photoelectric encoders with 1/3600 degree resolution.

Sep. 2012 - July 2015

- Design robot angle measuring systems on inductosyns and photoelectric encoders with 1/3000 degree resolution. - Design signal processing PCB boards with FPGA/CPLD communicating with upper computers through ISA/PCI.
- Implement neural network based error compensation algorithm on DPS for robot angle measuring systems.
- 2. C++ Control Software for High Precision Servo Robot [C5] (Sep. 2012 July 2013) (VC++ Commercial Software, Industrial Personal Computer, Robotics Control)
 - Develop Industrial Personal Computer (IPC) program for air bearing rotary stage and error automatically test system.
 Program Delta Tau PMAC motion control board for servo motor control.
 - Program Delta Tau PMAC motion control board for servo motor contro

PUBLICATIONS

Journals:

- J1. An Zou, Jing Li, Christopher D. Gill, Xuan Zhang. "RTGPU: Real-Time GPU Scheduling of Parallel Hard Deadline Tasks with Fine-Grain Utilization." *IEEE Transactions on Parallel and Distributed Systems 2019*. (in preparation)
- J2. An Zou, Huifeng Zhu, Jingwen Leng, Xin He, Yazhou Zu, Christopher D. Gill, Vijay Janapa Reddi, Xuan Zhang. "Ivory 2.0: Early-Stage Design Space Exploration Tool for Integrated Voltage Regulators and Its Power Delivery System" IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems 2019. (in preparation).
- J3. (TCAD 2020) An Zou, Jingwen Leng, Xin He, Yazhou Zu, Christopher D. Gill, Vijay Janapa Reddi, Xuan Zhang. "Voltage-Stacked Power Delivery Systems: Reliability, Efficiency, and Power Management." *IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems 2020.*

Conferences:

- C1. (RTAS 2020) Jinghao Sun, Jing Li, Zhishan Guo, An Zou, Xuan Zhang, Kunal Agrawal, Sanjoy Baruah. "Real-Time Scheduling upon a Host-Centric Acceleration Architecture with Data Offloading." *IEEE Real-Time and Embedded Technology and Applications Symposium. April 2020.* (accepted).
- C2. (MICRO 2018) An Zou, Jingwen Leng, Xin He, Yazhou Zu, Christopher D. Gill, Vijay Janapa Reddi, Xuan Zhang. "Voltage-stacked GPUs: A Control Theory Driven Cross-Layer Solution for Practical Voltage Stacking in GPUs." In 2018 51st Annual IEEE/ACM International Symposium on Microarchitecture, pp. 390-402. IEEE, 2018.
- C3. (DAC 2018) An Zou, Jingwen Leng, Xin He, Yazhou Zu, Vijay Janapa Reddi, Xuan Zhang. "Efficient and Reliable Power Delivery in Voltage-Stacked Manycore System with Hybrid Charge-Recycling Regulators." In 2018 55th ACM/ESDA/IEEE Design Automation Conference, pp. 1-6. IEEE, 2018.
- C4. (DAC 2017 Best Paper Nominations) An Zou, Jingwen Leng, Yazhou Zu, Tao Tong, Vijay Janapa Reddi, David Brooks, Gu-Yeon Wei, Xuan Zhang. "Ivory: Early-Stage Design Space Exploration Tool for Integrated Voltage Regulator." In *Proceedings of the 54th Annual Design Automation Conference*, p. 1. ACM, 2017.
- C5. (CCC 2014) An Zou, Hui Zhao, Yehan Ma and Da Li. Analysis Calculation and Testing of Rotary Inductosyn Angle Measuring Errors." In *Proceedings of the 33rd Chinese Control Conference*, pp. 8091-8096. IEEE, 2014.
- C6. (WCICA 2014) Da Li, Hui Zhao, Honglin Xue and An Zou. "The Design and Implementation of Universal Interface Circuit for Photoelectric Encoder." In *Proceeding of the 11th World Congress on* Intelligent Control and Automation, pp. 6006-6011. IEEE, 2014.

Honors and Awards

A. Richard Newton Young Student Fellow Award	2017
DAC Best Paper Nomination (first author)	2017
Graduate Fellowship The Ohio State University	2015
China National Scholarship	2014
The Second Price of National Postgraduate Mathematics Contest in Modeling (China)	2014
The First Level Graduate Student Scholarship	2014,2013
People Scholarship	2013, 2012, 2011, 2010
Outstanding Student	2012
Meritorious Winner Prize of National College Mathematical Contest in Modeling (MCM	M, U.S.) 2011
88412 Scholarship	2011
Individual Scholarship	2011

PROFESSIONAL SERVICE ACTIVITIES

Design Automation Conference (DAC) External Reviewer	2018,2019,2020
Journal of Signal Processing Systems Reviewer	2020

Mentored students

Master students: Adith Jagadish Boloor, Duhong Xu, Yunshen Huang Undergraduate students: Feiyang Jin, Shadi Davari, Hayden Sierra, Shuhe Tian, Chenyang Wang

TECHNICAL SKILLS

Over 7 years experiences in Computer Engineering: CPU/GPU Architecture, Embedded System, Robotics, Machine Learning, Digital Circuit Design, High Level Synthesis, FPGA/DSP, Linux Operating System, Real-time OS Scheduling, CUDA Programming, PCB Circuit Design,

Programming Languages: C/C++ (7+ years); Verilog (5+ years); CUDA; Python; M language; Latex **Software:** Cadence Tools; Synopsys Tools; CCS; Quartus2; Altium Designer; MATLAB